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Chapter 6
Introduction to Manipulator dynamics and control
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6.1 INTRODUCTION

Our study of manipulators so far has focused on kinematic considerations only.
We have studied static positions, static forces, and velocities; but we have never
considered the forces required to cause motion. In this chapter, we consider the
equations of motion for a manipulator—the way in which motion of the manipulator
arises from torques applied by the actuators or from external forces applied to the

manipulator.



Direct dynamic model Robotics

There are two problems related to the dynamics of a manipulator that we wish
to solve. In the first problem, we are given a trajectory point, @, ®, and ®, and we
wish to find the required vector of joint torques, 7. this is called Direct Dynamics

Direct
dynamics




Mass-spring-damper dynamic model
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Direct dynamic model

This formulation of dynamics
is useful for the problem of controlling the manipulator
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Inverse dynamic model Robotics

The second

problem is to calculate how the mechanism will move under application of a set of
joint torques. That is, given a torque vector, 7, calculate the resulting motion of the
manipulator, ®, ®, and ®. This is useful for simulating the manipulator.
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Manipulator position control Robotics




~Joint Space Control
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Cartesian space control
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Two methods for Dynamics modeling

Robotics
Formulations
Newton-Euler Lagrange
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Two methods for Dynamics modeling
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Exa m I e 1 Robotics

Here we compute the closed-form dynamic equations for the two-link planar

mamipulator shown in Fig. 6.0, For simphicity, we assume that the mass distribution
is extremely simple: All mass exists as a point mass at the distal end of each link.

Thesc masses are my and m,.
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Robotics

Extracting the # components of the f?ll-, we find the joint torques:
'I.'] —_— J?!EE§|:§'| —I— llg-z_]' + H'JE.E] I'lr:l{EE’ll '|- gi_.:l + |:_i'i'I|_ + ]']‘]1] I!-flél] = ”EEJ]IEE'IE:IE?-
—2malylysy68y + malygeis + (my +mallyges,

Equations (6.58) give expressions for the torgue at the actuators as a function

of joint position, velocity, and acceleration. Note that these rather complex functions
arose from one of the simplest manipulators imaginable, Obviously, the closed-form

equations for a manipulator with six degrees of freedom will be guite complex.
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THE STRUCTURE OF A MANIPULATOR'S DYNAMIC EQUATIONS

It is often convenient to express the dynamic equations of a manipulator in a single
equation that hides some of the details, but shows some of the structure of the
equations,

The state-space equation

When the Newton—Euler equations are evaluated symbolically for any manipulator,
they yield a dynamic equation that can be written in the form

T =M(@)B + V (O, ®) + G(O), (6.59)

where M (®) is the n x n mass matrix of the manipulator, V (@, ®) is an n x 1 vector
of centrifugal and Coriolis terms, and G(®) is an n x 1 vector of gravity terms. We
use the term state-space equation because the term V(®, ©), appearing in (6.59),
has both position and velocity dependence [3].

Each element of M(®) and G(®) 1s a complex function that depends on @, the
position of all the joints of the manipulator. Each element of V(©, ®)is a complex
function of both ® and ®,

We may separate the various types of terms appearing in the dynamic equations
and form the mass matrix of the manipulator, the centrifugal and Coriolis vector,
and the gravity vector.
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.6
I%ml (6.60)

M(®) = {%m: 2 ymacy + 1 my +my) Bmy + lilmac ] |

Eémg + Lilhmyc,

Any manipulator mass matrix is symmetric and positive definite, and is, therefore,
always invertible.

The velocity term, V(®, @), contains all those terms that have any dependence
on joint velocity. Thus, we obtain

L -—'ﬁlzflfzﬁ'zﬂ _ZJHEIIEESEEIHE
V(0, 0) = [ ol Lsy6? . (6.61)

A term like —m,!/ 1.!2326“ is caused by a centrifugal force, and is recognized as such

because it depends on the square of a joint velocity. A term such as —2m,1;1,5,6,6,
15 caused by a Coriolis force and will always contain the product of two different
joint velocities.

The gravity term, G(@®), contains all those terms in which the gravitational
constant, g, appears. Therefore, we have

G(®) = maylsgers + (my + madligey (6.62)
myls gy '

Note that the gravity term depends only on ® and not on its derivatives.



6.9 LAGRANGIAN FORMULATION OF MANIPULATOR DYNAMICS Robotics

The Newton—Euler approach is based on the elementary dynamic formulas (6.29)

and (6.30) and on an analysis of forces and moments of constraint acting between
the links. As an alternative to the Newton—Euler method, in this section we

briefly introduce the Lagrangian dynamic formulation. Whereas the Newton—FEuler
formulation might be said to be a “force balance” approach to dynamics, the
Lagrangian formulation is an “‘energy-based” approach to dynamics. Of course, for
the same manipulator, both will give the same equations of motion. Qur statement
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We start by developing an expression for the kinetic energy of a manipulator.
The kinetic energy of the ith link, k;, can be expressed as

k = 3mvg ve, + 5 "o} Loy, (6.69)

where the first term is kinetic energy due to linear velocity of the link’s center
of mass and the second term is kinetic energy due to angular velocity of the link

The total kinetic energy of the manipulator is the sum of the kinetic énergy in the
individual Jinks—that is,

k=3k. (6.70)
i=1

The v, and 'w; in (6.69) are functions of ® and ©, so we see that the kinetic energy

of a manipulator can be described by a scalar formula as a function of joint position
and velocity, k(©, @). In fact, the kinetic energy of a manipulator is given by

k(®, Q) = 30" M(@®)0, (6.71)

where M(®) is the n x n manipulator mass matrix already introduced in Section 6.8.
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Robotics

The potential energy of the ith ]_in_k, it;, can be expressed as

w; = m,; g’ DPC,

i i

where Ug is the 3 x 1 gravity vector, " P._is the vector locating the center of mass of

the ith hnk,

The total potential energy stored in the manipulator is the sum of the potential
energy in the individual links—that is,

i
i = Z ;. (6‘?4}

i=1

Because the “Pc'_ in (6.73) are functions of ®, we see that the potential energy
of a manipulator can be described by a scalar formula as a function of joint position,

u(B),

18



Robotics

The Lagrangian dynamic formulation provides a means of deriving the equa-
tions of motion from a scalar function called the Lagrangian, which is defined as the
difference between the kinetic and potential energy of a mechanical system. In our
notation, the Lagrangian of a manipulator is

L(O,0) = k(O, 0) — u(O), | (6.75)

The equations of motion for the manipulator are then given by
d dL adL
dr 3@ 90

where 7 1s the n x 1 vector of actuator torques. In the case of a manipulator, this
equation becomes

=, (6.76)

d ok ok N du
dt 0 90 90
where the arguments of k(-) and u(-) have been dropped for brevity.

=1, (6.77)
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EXAMPLE 6.5

Robotics
The links of an RP manipulator, shown in Fig. 6.7, have inertia tensors m———
I, 0 0 7
“ I = 0 Iy, 04,
- 0 0 Izzl .
) Ixxl 0 0 ]
GL=| 0 I, 0
0 0 IzzZ .

and total mass m, and m,. As shown in Fig. 6.7, the center of mass of link 1 is
located at a distance [; from the joint-1 axis, and the center of mass of link 2 is at the
variable distance d, from the joint-1 axis. Use Lagrangian dynamics to determine
the equation of motion for this maninulator.
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we write the kinetic energy of link 1 as Robotics

2452 1 2
kl - Eml'i'l H + ifzzl '91

and the kinetic energy of link 2 as

1 252 1 g2y 1 72
Jrfg — EHIE(dI'Hl + d.?') + EIEEE 191 .
Hence, the total kinetic energy 1s given by
k(©, ©) = 3(myl? + Iy + L + mad)07 + 3myd.
we write the potential energy of link 1 as
and the potential energy of link 2 as
iy = mogd, sIn(f,)

Hence, the total potential energy

HI:E}J = g(”’llf] -+ mzdz} Slﬂ(ﬂl) 21



Next, we take partial derivatives as needed for (6.77):

ok
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gy, sin(6y)

) g(myly +myd,) cos(6,) :I

Finally, substituting into (6.77), we have

Tl = (mliiz + IZ.E]. + IEE?- + Fﬂzdi']gI + ZmZdzé]d'z
+(m1£1 + mzdz)g CCIS(BI},

From (6.89), we can see that

M(®) =
V(O,0) =

G(@) =

— mzdzﬁ.'.f + m, g sin(8,).

[ {”I‘IE% + IIE]- + "zz.Z + Fﬂzd%} U
0 my |’

2mydy6, d,
—mzdgélz '

i (mqly + myd,)g cos(6y)
n,g sin(9,) '
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